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The current paper analyses the behavior of a photonic crystal cavity coupled with optical guides and able to transfer 
electromagnetic energy only in the forward direction. This simple photonic device with potential applications in photonic 
crystal microcircuits, especially intersection of guides, is studied, using “coupled mode theory” which is an approximate 
method that allows relatively simple derivations of optimal design parameters. Cavities coupled to guides appear 
everywhere in optical circuits. In many cases, they induce parasitic effects like important reflections back to the source. In 
other situations, if they are carefully tuned, optical devices consisting of micro resonators and guides can act as filters or 
unidirectional optical valves. The purpose of this article is to establish a procedure for designing an efficient intersection of 
guides, where the energy in one optical guide does not leak into the other, using a combination of analytical formula and 
numerical simulations. 
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1. Introduction 
 
Photonic crystals are periodic artificial dielectric 

nanostructures (Fig. 1) which affect the propagation of 
electromagnetic waves in much the same way as the 
periodic potential in a semiconductor influences the 
electrons motion, imposing allowed and forbidden 
electronic energy bands [5]. The existence of forbidden 
frequency bands inside photonic crystals leads to the 
possibility of constructing some micro optical devices like: 
highly efficient omnidirectional mirrors (Fig. 2), low loss 
waveguides able to direct light even if sharp corners 
appear along their path (Fig. 4, Fig. 5) [6], miniature 
optical filters or one directional energy couplers (Fig. 6). 

 

 
Fig. 1. Bidimensional photonic crystal.  

 
 

Fig. 2. Low loss omnidirectional reflector. 
 

 
 

Fig. 3. 2D resonant cavity. 
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The current paper will deal with an extremely general 
and important aspect regarding the design of photonic 
crystal passive devices, namely “the coupling of 
electromagnetic energy between a multimode optical 
resonator and a number of optical guides”. 

One way to directly analyze the behavior of 
waveguides, coupled with cavities, is to solve Maxwell 
Equations for a given photonic device (a spatial region 
consisting of a periodic dielectric pattern, possessing 
optical channels and cavities (Fig. 6)) [7]. A popular 
method that is regularly employed in studying the 
electromagnetic wave propagation is FDTD (Finite 
Difference Time Domain). However, this mathematical 
procedure does not give direct indications regarding the 
best configurations and optimal parameters. In most cases, 
it can be used just to verify some results obtained by other 
means. There are also situations when FDTD serves as a 
trial and error procedure, but changing the value of some 
parameters and running the algorithm again and again is a 
time consuming and laborious undertaking, in many 
circumstances, being hard to infer what values of input 
variables would lead to the desired behavior of the device 
under investigation. 
 
 

 
 

Fig. 4. Optical guide whose direction abruptly changes 
to 90o. The forbidden band of the crystal denies any 

energy loss in the region of the corner. 
 
 

 
 

Fig. 5. Splitter.  

 
 

Fig. 6. Optical filter and, in the same time, intersection of 
guides. The cavity acts as both filter and unidirectional 

coupler. 

 
In conclusion, an analytical formula, from witch an 

optimal set of parameters could be easily deduced, is 
needed. One relatively simple approach [2], [8] is to 
consider an idealized configuration, like the one in Fig. 7, 
described by the system ( 1 ) - ( 2 ) where a number, 
varying from one to n, optical guides converge toward a 
resonant cavity that receives and, in the same time, leaks 
energy from and into these optical branches. Such a 
model, ( 1 ) - ( 2 ), is based on “coupled mode theory” and 
was developed having in mind ordinary guides without 
any relation to photonic crystals [1]. So, the association 
between this theoretical model and photonic guides 
coupled to resonant monomod cavities is a bit forced and 
any theoretical prediction obtained using ( 1 ) - ( 2 ) has to 
be validated with the help of FDTD simulations. 

 
 
2. Simplified theoretical model for a  
     multimode cavity coupled with N guides 
 
In general, the behavior of an optical monomod 

resonator, coupled to n input-output ports, can be 
approximately described [1], [2] by the system of 
equations ( 1 ) - ( 2 ): 

 

 
 

Fig. 7. Monomod cavity coupled with  n input-output 
ports. 
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where a is the amplitude of the resonant mode with the 
frequency ω0 and lifetime τ; ui+, ui-, amplitudes of input, 
output signals respectively and Ci, pi, mi some complex 
constants. 

 
 
Fig. 8. Multimode cavity supporting m modes coupled to  

n input-output ports. 
 

 
The simplified theory of the monomod resonator 

coupled with n waveguides ( see Fig. 7 and equations ( 1 ) 
- ( 2 )) is useful for cases when a number of guides, not 
coupled to each other, are coupled with a monomod 
resonator. However, situation exists, like “the intersection 
of two optical guides” when a bimode cavity have to be 
utilized.  

Therefore, the system ( 1 ) - ( 2 ) has to be generalized 
for the case of a multimode cavity [2], [9], hoping to find 
some condition and criteria which permit designing more 
complex photonic devices than the ones whose behavior is 
described by ( 1 ) - ( 2 ). 

The first step in the process of generalizing ( 1 ) - ( 2 ) 
resides in writing expression ( 1 ) for m modes, as follows: 
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which can be put in the equivalent matrix form (4): 
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However, the diagonal form of Ω and T is not 

satisfactory, for all possible situations. For instance, in 
case of a bimode resonator coupled with only one guide, 
matrix T can not have a diagonal form because the two 
fundamental conditions, namely, time inversion and 
energy conservation, that ( 1 ) - ( 2 ) has to satisfies 
(according to the theory of monomod resonators coupled 
with n guides)  would not be met. In consequences Ω and 
T must be extended at their generalized form: 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mmmm

m

m

ωωω

ωωω
ωωω

L

MOMM

L

L

21

22221

11211

Ω , 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

mmmm

m

m

τττ

τττ

τττ

111

111

111

21

22221

11211

L

MOMM

L

L

T .                 (5) 

 
 

In the same way ( 1 ) was transformed in ( 4 ), where 
Ω and T are given by ( 5 ), an analog generalized 
expression for ( 2 ) can be written: 
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Therefore, it can be said that the behavior of a 

multimode resonator, supporting m modes and coupled 
with n guides, is given by the following two matrix 
equations which form a system: 
 

( ) ( )ttj
dt

td T
++−= UCaTΩa )()( ,                   (7) 

( ) ( ) ( )ttt paMUU += +− .                               (8) 
 

In the same way as in the case of ( 1 ) - ( 2 ), it is 
expected that Ω, C, T, M, p are not independent but some 
connections exists between them which follow from the 
conditions of time inversion and energy conservation as 
already discussed  above.  

Thus, if the cavity in Fig. 8 is supposed to have the 
initial energy E(0)=a+(0)a(0), and all the input signals are 
zero, U+(t)=0, from the principle of energy conservation it 
follows that: 
 
( ) ( ) ( ) ( )[ ] ( ) ( )tttttt
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−
+
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(9) 
 

where “+” at the exponent of a matrix signifies an 
operator which transform the matrix in its adjunct (ex: 
a+=(aT)*, “T” means transpose and “*” conjugate). As a 
remark, ( 9 ) made use of the matrix identity: (AB)+=B+A+. 
Expression ( 9 ) means that the decrease of energy inside 
the resonator must equal the radiated power through the n 
output ports. 

On the other side, according to  (7): 
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where it was considered that: Ω+= Ω and T+= T as a 
supplemental condition. 

If (9) is compared to ( 10 ) the following relation 
between T and p follows immediately: 
 

Tpp 2=+ .                                         (11) 
 

Coming back to (7) and supposing again that the input 
signals are zero, the solution of ( 7 ) is: 

 
( ) )0()( aa TΩ tjet −= ,                            (12) 

 

As a note, relation (12) was obtained using the 
mathematical theory which tells that the solution of the 
matrix equation )()( tt ff A=′  is )0()( ff Atet = , where A 
is a square matrix of k x k elements and f a vector of length 
k. 

Using (12) and (8) the expression of the output signals 
can be written as: 

 
( ) ( ) )0(apU TΩ tjet −

− = .              (13) 
 

The radiation of the energy inside the cavity through 
all output ports has to be reversible in time (as already 
discussed). Therefore, if the system in Fig. 8 is fed with 
the signal: 
 

( ) ( ) )0(* apU TΩ tjet +
− = ,                 (14) 

 
which is the time reverse of ( 13 ), the energy should 
accumulate inside the multimode resonator till it reaches 
E(0)=a+(0)a(0). Therefore, if ( 14 ) is fed as input signal, 
U+, in ( 7 ), it follows that: 
 

( ) ( ) ( ) )0()( * apCaTΩa TΩ tjT etj
dt

td ++−= .     (15) 

 
The energy absorbed by the cavity can be calculated 

using a procedure similar to ( 10 ). Thus, the absorbed 
power has the expression: 
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On the other side, the rate of energy increase must equal 
the power absorbed by the cavity through its n ports. 
Therefore, using (8), the following equality can be written: 
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From (19) and (20) it follows that: 
 

( ) 0)0(2)0( *** =++−−+ apCCpppTa TTT .        (21) 

On the other side, **22 ppTppT T=== + (see (11)). 
Thus, 
 

0**** =++−− pCCppppp TTTT .            (22) 
 

The equality ( 22 ) is satisfied if: 
 

pC = .                                     (23) 
In conclusion, two important restrictions have been 

established till now: (1) p+p=2T and (2) C=p which 
connects matrices C, p, T. In the next lines, we will try to 
find a link between these three matrices and M. A first 
step to achieve this goal is to find the explicit solution, 
a(t), of the equation ( 15 ). Therefore, if both members of ( 

15 ) are multiplied by 
( )tje TΩ+−

 the following relation is 
obtained: 
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which means that: 
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By integrating ( 25 ), a formula for a(t) is found: 

( ) ( )( ) ( )( ) ( ) CtapCa TΩTΩTΩTΩ tj
t

vjTvjtj edveeet +++−+ += ∫
0

* )0()(  

where  
 

)0(aCt =                                         (26) 
 

Once a(t) has been calculated, the condition of zero 
radiation at t=0 can be imposed. Therefore, the equation            
(8), where the excitation is the signal in ( 14 ) and a(t) is 
given by (26), must have the left member null at t=0. 
Thus, 
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t
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which means that: 
 

pMp −=* .                                      (28) 
 
In conclusion, the restrictions, in which (7) - (8) exist, are: 
 

TCC 2=+ , CMC −=*  and pC =                    (29) 
 

The conditions (29) are intrinsic restrictions that must 
be satisfied by any multimode cavity coupled to a number 
of guides. Only after these conditions are imposed other 
supplemental restrictions that vary from case to case, like 
zero unitary transmission between two guides coupled to a 
resonator, have to be imposed. 

 
 
3. The intersection of two photonic  
     guides 
 
The theory in the precedent paragraph will be used in 

order to design an efficient intersection of guides with 
minimal cross talk between its two optical paths and  
physical dimensions as little as possible, which represents 
a particular case of passive photonic devices that can have 
potential applications for optical microcircuits [10], [11]. 

 

 
Fig. 9. (a) Intersection of photonic guides. (b) Simplified representation of (a). 
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If the cavity, from the intersection of the two guides in 

Fig. 9, is considered monomod, it can be proven quickly, 
using the theory in the precedent paragraph, that the 
resonator radiates its energy in all the four channels no 
matter which guide brings energy into the cavity. 

Since the monomode resonator was found not to be 
satisfactory, the next step consists in trying the case of a 
bimode resonator. The equations that describe the device 
in Fig. 9 (b), where the cavity is considered as supporting 
two modes, have the form  (30) - (31), according to the 
theory in paragraph 2 (see (7) - (8) and conditions (29)). 
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Matrix M has the form in ( 31 ) for matching the 
conditions of zero coupling when (see Fig. 9) ui-(t) 
depends only of ui+(t). 

The system (30) - (31) can also be put in the form: 
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 ( ) ( ) ( ) ( )taCtaCtumtu 2121111111 ++= +− ,     
( ) ( ) ( ) ( )taCtaCtumtu 2221212122 ++= +− , 

            ( ) ( ) ( ) ( )taCtaCtumtu 2321313133 ++= +− ,        (33) 
( ) ( ) ( ) ( )taCtaCtumtu 2421414144 ++= +− . 

 
In order to calculate transmission coefficients T12, T14, 

T13, (not to be confused with the elements of matrix T) and 
the reflection coefficient R11, the following particular case; 
u1+(t)= u1+ejωt; u2+= u3+= u4+=0; is considered. If ( 32 ) is 
solved with these values as input signals then the 
following two relations can be written: 
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.                (34) 

Using expressions (34) and the system (33), the 
complex transmission and reflection coefficients, 
corresponding to the port 1, results. Thus, 
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where T12= |t12|2, T14= |t14|2, T13= |t13|2, R11= |r11|2. 
Once the four coefficients calculated, conditions (29) 

have to be imposed for finding the connections that exist 
between coefficients Cij. Therefore, forcing the condition: 
MC*=-C, some relation between the phases, φij, of Cij 
appears: 
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Another condition that has to be satisfied is C+C=2T 

(see ( 29 )). Thus, 
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With the help of ( 39 ), the equality ( 40 ) turns into: 
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where ni=1 if ki is even and ni=-1 if ki is odd. As a remark, 
relations ( 39 ) between the phases of coefficients Cij and ( 
41 ) between their modules are intrinsic conditions that, 
according to the theory in the precedent paragraph, the 
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device in Fig. 9 (b) has to satisfy automatically, but they 
are not enough to force no cross talk between the two 
propagation paths 1-3 and 2-4. Therefore, supplemental 
non interferential conditions have to be added. For the 
input-output port 1 these restrictions are: 
 

01412 == TT  and 113 =T .                       (42) 
 

T12=|t12|2=0 means that: 
 

0
2

21

1122221121
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+
=

DD
DCCDCCT ,             (43)  

 
where: 
 

( ) 1011 1 τωω +−= jD , ( ) 2022 1 τωω +−= jD .        (44)  
 

Making the notation 121121 GDCC =  and 211222 GDCC = , 
the condition ( 43 ) becomes equivalent with: 
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with  

01 ≠G ,                          (46)  
 

which leads to the solutions: 
 

(a) 021 == GG ,(b) 112 =GG  and 

( ) ( ) ( )π12argarg 1212 +=− kGG  where 01 ≠G . (47) 
 

In the case (47) (a), which is the only one that will be 
discussed, 
 

012 =T ⇒ 01121 =CC , 01222 =CC .              (48)  
 
Analogously: 

 
023 =T ⇒ 02131 =CC , 02232 =CC , 
034 =T ⇒ 03141 =CC , 03242 =CC ,           (49) 
041 =T ⇒ 04111 =CC , 04212 =CC . 

 
The system formed by equations (48) - (49) has a few sets 
of solutions from which ( 50 ) distinguishes as the set of 
practical interest: 
 

021 =C , 041 =C , 032 =C , 012 =C .        (50)  
 

Forcing the condition T13=1 and using (36), (41) and (50), 
the following results are obtained:  
 

1
2

31
2

11 1 τ== CC                                (51)  
 

and, in an analogous way, T24=1 leads to: 
 

2
2

42
2

22 1 τ== CC .                         (52)  
 

In consequence, if the cavity in Fig. 9 (b) supports two 
modes, out of which, one couples just to the guides 1-3 
with equal coupling coefficients and the other just to the 
ports 2-4, also with equal coupling coefficients, then there 
is no cross talk between the two propagation paths, 1-3 
and 2-4. Also, the transmissions in the forward direction 
are unitary for the resonant frequencies ω01 and ω02 of 
each mode and have the general expressions: 
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( ) 2
2

2
02

2
2

24
1

1
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=T .  (53)  

 
As a note, the entire theory developed till now is 

general and not specific for photonic guides coupled to 
photonic resonators. In consequence, conditions (50), (51), 
(52) are useful only if they can be physically implemented 
in an real intersection of photonic guides. Therefore, a 
numerical simulation that solves directly (using the FDTD 
method) Maxwell equations, for two guides, carved inside 
a photonic crystal, which intersect in one place, is needed 
for verifying the usefulness of the simplified theory we 
have discussed above. For this purpose, the structure in 
Fig. 10 is chosen. The building blocks of the crystal in Fig. 
10 are characterized by r=0.2a (the central “atom” in the 
middle of the resonant cavity is different having r=0.3a), 
εra=11.56, εrb=1, where r is the ray of the circular 
dielectric “atom”, εra represents the relative electric 
permittivity of the “atom” and εrb   the same dielectric 
constant but corresponding to the material that is found 
around the “atom” in the remaining of the cell. The 
excitation source is a narrowband modulated pulse test 
signal, characterized by an uniform spectrum in the 
frequency range [0.33(c/a), 0.4(c/a)] (where c is the speed 
of light in vacuum and a is the length of the side of each 
elementary square cell) and a maximum amplitude A=2 
a.u.. The source acts in the point marked with “+”, located 
at the left of Fig. 10, in the middle of the optical guide. As 
a remark, the frequency range [0.33(c/a), 0.4(c/a)] falls 
inside the forbidden band of the photonic crystal in Fig. 10 
and also inside the pass band of the guides. 

With the help of the excitation, whose characteristics 
were given above, it is found that the resonant frequencies 
of the cavity for its two modes are  f01=f02=0.368(c/a) or 
equivalent ω01= ω02=2π f01=2π f02=2π· 0.368(c/a). 
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Fig. 10. Intersection of photonic guides. 

 
Fig. 11. The field map of the component Ez for the case when a sinusoidal excitation with the frequency f=0.368(c/a) 
is used to excite the structure shown in Fig. 10. The image is taken at t=282.84(a/c) which corresponds to a moment  
                                                          after the continuous regime has been established. 

 
 

As can be seen in Fig. 11, there is no visible cross talk 
between the horizontal and the vertical guide, the light 
being channeled only in the forward direction and no 
visible power leaks at 90o angle, a fact that is in 
concordance with the simplified theoretical model. 

 
 

4. Conclusions 
 
A photonic intersection of guides has been studied 

using a double approach. The first method, based on 
“coupled mode theory”, offers clear conditions for perfect 
transmission and zero cross talk between the two optical 
paths, being a powerful procedure for finding optimal 
parameters and explaining why the structure behaves like a 
band-pass filter. Despite the approximate nature of the 
method, the “coupled mode theory” proves to be a key tool 
that gives important information about the optimal 
configuration of photonic crystal devices.  It is true, 
because of its generality, “coupled mode theory” does not 
tell what measures have to be taken in order to attain the 
right coupling coefficients. Their optimal values have to 
be found using FDTD in a trial and error process. 

Therefore, the analytical expression of T is only an 
approximation. Also, the values of 1/τ need to be 
determined experimentally (numerically with the help of 
FDTD - Finite Difference Time Domain - procedure). 
However, the formula for T permits a quick identification 
of potential unsuitable values for 1/τ (too small, big, etc.) 
and, in consequence, each τ can be adjusted accordingly, 
by inserting impurities of various diameters inside the 
cavity (a known procedure for modifying the emission 
absorption rate of resonators). After a few FDTD 
simulations the right τ is obtained. 

As a remark, before proceeding to design an optical 
device using “coupled mode theory” and FDTD, the 
properties of the uniform photonic crystal (i.e. its 
frequency gaps) have to be determined using a procedure 
called Plane Wave Method (PWM) because, outside this 
forbidden ranges, electromagnetic energy will penetrate in 
the body of the crystal rendering it useless. Also, the 
properties of the particular optical guide and cavity 
utilized, more precisely their number of modes, the field 
maps of each mode, etc., have to be determined with the 
help of PWM. 
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